Cybersecurity

Hashing and Digital Signatures

What is Cryptography?

- Comes from the two Greek
 words *kryptos* and *graphein*
 - Kryptos meaning "a secret" or "to hide"
 - Graphein meaning "to study"
- Cryptography methods have been around for thousands of years
 - One of the first examples is a Caeser Cipher which would have been used in the early BC's.

Example of a cipher disk used to help encode and decode a Ceaser Cipher

Cryptoanalysis

- The art (or study) of solving/cracking encryptions
- There are constantly people/research happening to find flaws and/or weaknesses in ciphers
 - No cipher is 100% secure, but how secure can we make them?

Cryptography Basics

- Plaintext
 - Message to be sent (not encrypted)
- Ciphertext
 - The message when encrypted
- Cipher (also known as a Key)
 - The algorithm that is used to encrypt and decrypt the message

Cryptographic Keys (Ciphers)

- Keep them private
 - You don't want the public knowing how to decipher your messages
- The Key determines the output
 - Many different types of key
 - Some keys are one-way keys and cannot be undone
- Trust the process

key

- Sometimes the algorithm is well known
- However, the public does not know the individual

Key Basics

- Do not use short keys
 - Helps prevent against brute force attacks
 - 128-bit or higher keys are common
 - A lot of keys use very high prime numbers
- How to exchange keys (across an unsecure medium)?
 - Key must remain a secret
 - Trusted domains help protect the keys
 - Diffie-Hellman is a common key exchange

Encrypt and protect the key exchange

Famous Ciphers

- Pigpen Cipher
 - Used by Freemason's in the 1700's
 - Letters represented by symbols
- Enigma Machine
 - Used by Germans in WWII
 - "Cracked" by some of the Allies

Hashes

- One-way algorithm
 - Encryption can only work one way, can not be reversed
 - Thus, you can not recover the original password
 - This helps keep password confidentiality
- Common uses
 - Verify a downloaded data is the same as the original data
- Digital signatures

Hash Examples

- SHA224 (224 bits)
 - Password: NICERC
 - SHA224 Hash: a771341621adb584d963401f83c50a727b8fd3268572830a50a42035
 - Password: nICERC
 - SHA224 Hash: 8f23d28facc5c604adb5f50196f60af70ec58d8e38d72deb3c461690

YB=R.ORG

- MD5 (128 bits)
 - Password: NICERC
 - MD5 Hash: 962d07c231a9c3dd52822be8f857fb67
 - Password:NIcERC
 - MD5 Hash: ff12dfa035134708287d104b8e1acc0b

Collision

- Collision is two different inputs have the same output
 - Hashing should never have two different passwords have the same hash
 - Hash should be unique
- There are some examples where hashes give the same output
 - Very rare
 - 1 in a million if/when they are found

Salt, IV, Nonce

- Salt is a random data used for additional input to a hashing algorithm (or one-way algorithm)
 - Password: pandae7y65i84jf83idj
 - SHA256 Hash: fbe6f54415a28b23a5792796f297718de9a56b64e60ac3ed919e6da8d43e6de7
 - Password: pandaj4l3ld092kldl377
 - SHA 256Hash: 752389e2b80ca552699fa58cf380e9f2fc60f040da28864ac13fc68a1e137490
- IV (Initialization Vector) is mainly used in for wireless connections
- A nonce is a salt that is only used once

Practical hashing

- Storing Passwords
 - · Hash is stored instead of actual password
 - · Hashes will be compared instead of password
 - Original password can't be retrieved
- Verifying a downloadable file
 - · Website provides the hash
 - · If hash is the same, the document hasn't been altered
- Digital Signatures
 - Provides proof that a message was not changed
 - · Also makes sure that a fake signature was not used
 - Contains both a private and public key

	Usemame	PasswordHash
1	User1	e10adc3949ba59abbe56e057f20f883e
2	User2	5f4dcc3b5aa765d61d8327deb882cf99
3	User3	bf787577ff656cde5b5d1f8236a75d2a
4	User4	96e79218965eb72c92a549dd5a330112
5	User5	25d55ad283aa400af464c76d713c07ad
6	User6	d8578edf8458ce06fbc5bb76a58c5ca4
7	User7	25f9e794323b453885f5181f1b624d0b
8	User8	4297f44b13955235245b2497399d7a93
9	User9	22d7fe8c185003c98f97e5d6ced420c7
10	User10	0d107d09f5bbe40cade3de5c71e9e9b7
11	User11	827ccb0eea8a706c4c34a16891f84e7b
12	User12	81dc9bdb52d04dc20036dbd8313ed055

Stored Hashed passwords